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Abstract PF-4455242 and its analogues represent a new
series of kappa opioid selective antagonists that demonstrate
high selectivity and potency. We investigated their binding
mode to the κ-receptor via docking and molecular dynamics
simulations. The ranking of the predicted binding free ener-
gies is consistent with experimental results. Detailed bind-
ing free energies between antagonists and individual protein
residues were calculated, and key residues involved in bind-
ing were identified. Deviation of the active site residues was
investigated, and the results show that Gln115, Leu135,
Tyr139, Trp287 and Tyr313 deviate greatly from the refer-
ence structure. Information obtained from molecular model-
ing studies will aid in the design of potent kappa receptor
antagonists.

Keywords Kappa receptor . Docking . Molecular dynamics
simulation . MM-GB/SA

Introduction

The four opioid receptors, μ, δ, κ, and the nociceptin/orphanin
FQ peptide receptor, belong to the class A (rhodopsin-like) γ
subfamily of G-protein-coupled receptors (GPCRs), which are
characterized by the presence of seven transmembrane heli-
ces, and are coupled predominantly to heterotrimeric Gi/Go

proteins in the intracellular domain [1, 2]. The μ, δ and κ

opioid receptors are distributed widely in the central nervous
system and, with opioids as ligands, are involved in a wide
range of physiological symptoms such as pain perception,
mood regulation, physical dependence and development of
analgesic tolerance [3, 4]. Each opioid receptor type has
selective agonists and antagonists that bind to and produce
effects unique to that individual receptor type [5].

The kappa opioid receptor used to be considered as a
promising target for pain, potentially lacking addiction/abuse
liability. But most clinical trials were ended because of side
effects [6]. Dysphoria, and strong diuresis are the most severe
side effects associated with the application of kappa agonists.
Dynorphin is the native peptide agonist at the kappa receptor,
and changes in dynorphin levels in the nucleus accumbens in
response to stress may be noteworthy. Most depressed patients
exhibit a reduced ability to experience pleasure (anhedonia)
and loss of motivation. Reward is mediated by the ventral
tegmental area (VTA) nucleus accumbens (nAcc) dopaminer-
gic pathway, which is modulated (inhibited) by the κ receptors
located directly on dopaminergic containing cells that project
to the nAcc. Dynorphin up-regulation in the nucleus
accumbens shell is stimulated by stress and various drugs of
abuse and causes anhedonia-like effects, potentially linking
kappa antagonism as a path to treating depression. As a result,
selective antagonists are of considerable interest as potential
pharmacotherapies for addiction (cocaine, opiate, alcohol,
nicotine, and possibly others), depression, anxiety disorders,
obesity, and psychosis disorders [7]. Opioid antagonists with
varying degrees of receptor potency and selectivity have been
developed for the κ opioid receptor. PF-4455242 (Fig. 1,
compound 11) and its analogues are a new series of kappa
opioid selective antagonists reported by Verhoest and co-
workers [16]. Compared to other antagonists, this series of
compounds has two advantages: low molecular weight and
moderate lipophilicity. Both properties are essential for ideal
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central nervous system drugs. PF-4455242 has entered phase
1 clinical testing. However, the binding model of these com-
pounds to the κ-receptor still remains unclear. In this work, we
selected six antagonists with different potency (Fig. 1) to
explore the binding mode via docking and molecular dynam-
ics (MD) simulations. The MM-GB/SA method was used to
calculate the binding free energy, which helps us better under-
stand the interaction between these small molecular antago-
nists and the protein. Detailed binding free energies between
antagonists and individual protein residues were calculated
using the MM-GBSA decomposition process.

Theory and methods

Antagonist structure

Sybyl-X 1.3 (http://www.tripos.com) was used to construct
the original structure of these antagonists. The benzylic nitro-
gen atoms were modeled as ammonium states, so each entire
molecule was positive charged. Geometry optimizations were
performed using the Tripos force field with Gasteiger-Hückel
charges and the Powell conjugate gradient algorithm. There-
after, the structure was energy-minimized using Gaussian
software [8] at the B3LYP/6-31G* level, and RESP charges
were assigned to these inhibitors by the antechamber module
in Ambertools12 package. The resulting structures were used
for docking and dynamics studies.

Docking studies

A newly resolved X-ray structure of the kappa receptor and
its antagonist JDTic was retrieved from the Protein Data
Bank (PDB id:4DJH) [1]. There are two chains in the
complex; chain A was used in this work. AutoDock 4.2
[9] was used to locate the appropriate binding orientations
and conformations of the compounds into the binding pock-
et. The numbers of grid points in x,y,z were set to 70,70, 70
with the spacing value equivalent to 0.375 Å, and the center
of the JDTic was regarded as the grid center. During
docking, the number of docking runs was 150. The popula-
tion in the genetic algorithm was 50, the number of energy
evaluations was 250,000, and the maximum number of
iterations was 27,000. Other parameters were set at the
default values implemented by the program.

Molecular dynamics simulation

The κ-receptor crystal structure was determined using a
κ-OR-T4 lysozyme (T4L) fusion protein (Fig. 2a), in
which human κ-OR was engineered by fusing lysozyme
from T4 phage (T4L) into ICL3 (Gly 261–Arg 263); the
T4L was omitted in our simulations (Fig. 2b). The

missing heavy atoms and missing residues Thr302–
Thr306 and Val262 were modeled using Modeller 9v7
software [10]. Hydrogen atoms in the kappa receptor
were added with the tleap module in the Amber soft-
ware. Titratable residues other than Asp105 were left in
their dominant protonation state at pH 7.0. Asp105,
which is buried in the protein interior, was neutral in
all simulations. Furthermore, the amino terminus Ser55
and the carbonyl terminus Pro347 were capped by an
acetyl group (ACE) and an N-methyl group (NME),
respectively. The prepared protein structures were inserted
into an equilibrated palmitoyl-oleoyl-phosphatidyl-
choline(POPC) bilayer using vmd software [11]. All lipid
molecules and waters with non-hydrogen atoms within
2 Å of the protein were deleted. The resulting mem-
brane pdb file was processed by charmmlipid2amber.x
provided by Ambertools12 and then combined with the
protein. An appropriate amount of NaCL (0.15 nM) was
added to the aqueous phase using tleap software. An
appropriate number of chloride ions were added to the
complex to neutralize the charges. The ff99SB and
lipid11 force field were applied to produce force field
parameters for the protein and the lipids, respectively.

All simulations were carried out using NAMD soft-
ware. The particle mesh Ewald (PME) method [12] was
applied to treat long-range electrostatic interactions with
a periodic boundary condition, and bond lengths involv-
ing hydrogen atoms were constrained using SHAKE
algorithm . The time-step for three MD simulations is
1 fs, with a direct-space, non-bonded cutoff of 10.0 Å .
We performed energy minimization using the conjugate
gradient method and a MD simulation for 200 ps with
the solute positions restrained. We then performed 25 ns
equilibration at 310 K with the protein restrained to
relax the membrane. After that, different ligands were
added to the system based on the docking results, wa-
ters with non-hydrogen atoms within 2 Å of the ligand
were deleted, and one more chloride ion was added.
The force field parameters of the small molecular an-
tagonists, including the Lennard-Jones, torsion and bond
angle terms, were assigned using the antechamber. The
resulting systems had 258 lipid molecules, 57 sodium
ions, 64 chloride ions, and about 20,000 water mole-
cules, for a total of 100,000 atoms, and measured 105×
105×110 Å3 (Fig. 2c). After heating and equilibrium, a
10-ns isothermal isobaric ensemble (NPT)-MD simula-
tion was applied to each system without any restraints.
The temperature was regulated at 310 K using Langevin
thermostat and the pressure was kept at 1.0 atm using
isotropic positional scaling. The atom coordinates were
collected at intervals of 1 ps for the last 10 ns to
analyze the structures in detail. Finally, the root-mean-
square deviation (RMSD) of protein backbone atoms
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and antagonists was computed along the MD trajectory
relative to the initial structures to determine the stability
of the system.

MM-GBSA calculations

For each system, 100 snapshots were extracted from the
last 2 ns along the MD trajectory at intervals of 20 ps
for free energy calculations. The binding free energy of
the antagonist to the κ receptor was calculated using the
MM-GBSA method [13] in this work. In this method,
the binding free energy (ΔGbinding) can be represented
as:

ΔGbinding ¼ Gcomplex � Gprotein þ Glignd

� � ð1Þ
The binding free energy (ΔGbinding) is evaluated as the

sum of the changes in the molecular mechanical (MM) gas-

phase binding energy (ΔGMM). The solvation free energy
(ΔGsolv), and entropic (−TΔS) contribution

ΔGbinding ¼ ΔGMM þΔGsolv � TΔS ð2Þ

ΔGMM is further divided into two parts: van der Waals
(ΔEvdw) and electrostatic energies (ΔEele). The solvation
free energy (ΔGsolv) is further divided into a polar (ΔGpol)
and a nonpolar component (ΔGnonpol).

ΔGMM¼ΔEvdw þΔEele ð3Þ

ΔGsolv ¼ ΔGpol þ ΔGnonpol ð4Þ

ΔGpol was computed using the pbsa program in Amber.
The dielectric constant inside the solute was set to 1.0 and

Fig. 1 Molecular structures of
six opioid kappa (κ)-receptor
antagonists

Fig. 2 a Structure of the kappa
(κ) receptor and its antagonist
(PDB id:4DJH) [1]. Chain A of
4DJH, T4L is in green. b
Missing residues in the
structural model for the κ
receptor were completed with
homology method (red). c The
starting structural model for
molecular dynamics (MD)
simulation

J Mol Model (2013) 19:3087–3094 3089



80.0 in the solvent in our calculations. ΔGnonpol was calcu-
lated by:

ΔGnonpol ¼ gSASAþ b ð5Þ
where SASA is the solvent-accessible surface area as deter-
mined by the MSMS program [14] with a probe radius of
1.4 Å. The values γ and β are empirical constants. We used
0.0072 kcal/(molÅ2) and 0 kcal mol-1, respectively. We
chose a total number of 100 snapshots evenly from the last
2 ns on the MD trajectory with an interval of 20 ps.

Calculation of the inhibitor–residue interaction

The inhibitor–residue interaction, which is valuable to
qualitatively define the binding mechanisms of the six
antagonists to the kappa receptor, was analyzed using
the MM-GBSA decomposition process. The binding in-
teraction of each inhibitor–residue pair can be represent-
ed as:

ΔGinhibitor�residue ¼ ΔEvdw þΔEele þΔGpol þΔGnonpol ð6Þ
In this equation, ΔEvdw and ΔEele are non-bonded van

der Waals interactions and electrostatic interactions, respec-
tively. ΔGpol and ΔGnonpol are the polar and non-polar
contributions to the inhibitor-residue interaction, respective-
ly. The polar solvation contribution (ΔGpol) is calculated
using the pbsa program, and the parameters for the GB
calculation were developed by Onufriev et al. [15]. All
energy components were calculated using the same snap-
shots as the free energy calculation.

Results and discussion

Docking result

To determine the probable binding conformations of these
antagonists, AutoDock4.2 was used to dock all compounds
into the active sites of the κ receptor. The docking protocol
was validated by re-docking. JDTic was removed from the
active site and docked back into the binding pocket. The
nitrogen atoms in both the piperidine and isoquinoline moi-
eties of JDTic were treated as protonation states (Fig. 3a).
The RMSD between the predicted conformation and the
observed X-ray crystallographic conformation of JDTic
was 0.52 Å (Fig. 3b). The small RMSD value indicated that
the parameter set for the AutoDock simulation was reason-
able to reproduce the X-ray structure. Therefore, the
AutoDock method and the parameter set could be extended
to search the binding conformations of other antagonists.

The docking approach was able to dock all of the antag-
onists into the active site with a similar pose (Fig. S4 in
supporting information) with the exception of compound 11.
The docked conformation of 11 is a little different from the
others in that there is a dihedral angel between the two
benzene rings (Fig. 3c). This will be discussed in detail in
the next section. To elucidate the interaction mechanism,
compound 22—one of the most potent antagonists—was
selected for more detailed analysis. The best possible
interacting model of compound 22 with the κ receptor and
the main residues involved in the interaction are depicted
generally in Fig. 3d. Compound 22 was docked into the

Fig. 3 a Structure of JDTic. b
Conformational comparison of
JDTic from the crystal structure
(green) and that from the
autodock 4.2 result (by atom
type color). c Conformational
comparison of compound 22
(green) and 11 (by atom type
color). d Three-dimensional
(3D) structural model of the
main interactions between
compound 22 and the κ
receptor binding pocket
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binding site in such a way that its benzylic nitrogen atom
forms an ionic interaction with the Asp138 side chain. The

R1 group is placed in a hydrophobic sub-pocket formed by
the side chains of Tyr139, Met142, Trp287, Ile290, His291
and Ile316. The biphenyl group interacts with the side chain
of Leu135, Tyr312, Ile316, Tyr320 through hydrophobic
interactions. Thr111, Gln115, Trp124 and Val134 form an-
other sub-pocket; the R2 group locates to this pocket.

Dynamic stability from MD

In this work, lipid bilayer simulations were carried out
successfully for each system. The final 10-ns trajectory
fragment was used for analyses. To evaluate the quality of
our MD simulation, the RMSD values of the protein back-
bone atoms relative to the initial minimized structure during
the phase of the simulation were calculated (plotted in
Fig. 4). We can see that the six systems reached equilibrium
after 3 ns of the simulation phase. This result shows that the

a b

c d

e f

Fig. 4a–f Root-mean-square
deviations (RMSD) of the κ
receptor backbone atoms
(black) and the ligand (red)
relative to their initial
minimized complex structures
as a function of time. Ligands: a
10, b 11, c 22, d 30, e 34, f 38

Fig. 5 Superimposed initial and final conformations of antagonist 11.
The initial conformation is shown with different colors for different
elements, the final conformation is shown in blue. Right Enlargement
of the P2 group
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trajectories of the MD simulations for the six complexes
after equilibrium were reliable for post analyses.

One of the six antagonists (Fig. 4b, compound 11) ex-
hibits increased RMSD after 2 ns, suggesting a conforma-
tional change during MD simulation. From the MD
trajectory, we found that this conformation change was
brought about by rotation of the P2 group. Figure 5 shows
the superimposed initial and final conformations of antago-
nist 11. The dihedral angel between the two benzene rings
changed from 75° to about 105°.

MM/GBSA calculation

To gain more insight into the inhibition mechanisms of the
six small molecules at the atomic level, the MM-GBSA
method was used to calculate binding free energies (Table 1).
A total of 100 snapshots were taken at a time interval of
20 ps from the last 2 ns of the MD simulation for analyses of
binding free energies.

The components of binding and solvation energies com-
puted by MM-GBSA listed in Table 1 reveal that the

binding free energies of compounds 10, 11, 22, 30, 34 and
38 to the κ receptor were −35.18, −37.73, −38.92, −33.91,
−28.25 and −34.61 kcal mol-1, respectively. The results are
very good relative estimates of the antagonist binding affin-
ities, with the correlation coefficient being 0.69 (Fig. 6). It is
encouraging that the ranking of the experimental binding
free energies is consistent with our predictions, which
means that the current binding model is reliable.

According to the energy components of the binding free
energies listed in Table 1, the major favorable contributors
to inhibitor binding were van der Waals energies (ΔEvdw).
Non-polar solvation energies (ΔGnonpol), which correspond
to the burial of SASA upon binding, also made important
contributions to binding. Although the electrostatic terms
(ΔEele) favored antagonist binding, these favorable contri-
butions were completely screened by the unfavorable stron-
ger polar solvation energies (ΔGpol). Furthermore, it should
be noted that ΔEvdw is much stronger than ΔGnonpol. There-
fore, van der Waals energies contribute most to binding of
the antagonists with the κ receptor. Pyridyl analogues(30,
34, 38) showed ideal physicochemical properties and in

Table 1 Binding free energies computed by the MM-GBSA methoda

Antagonist ΔEvdw ΔEele ΔGpol ΔGnonpol ΔGbinding ΔGexpd

10 −43.28±2.41 −86.96±8.16 100.75±7.46 −5.70±0.27 −35.18±2.49 −11.34

11 −46.04±2.94 −89.16±6.98 104.22±5.99 −6.73±0.15 −37.73±3.05 −12.08

22 −49.97±2.86 −66.90±6.95 84.19±6.25 −6.22±0.17 −38.92±2.70 −13.19

30 −40.56±2.95 −97.51±7.91 110.05±7.16 −6.29±0.24 −33.91±3.16 −9.65

34 −38.43±2.76 −90.60±6.94 106.95±5.91 −6.17±0.18 −28.25±3.26 −8.84

38 −43.12±2.87 −79.88±5.04 94.60±4.42 −6.20±0.14 −34.61±2.89 −10.32

a All values are given in kcal mol-1

b ΔGbinding ¼ ΔEvdwþΔEeleþΔGpolþΔGnonpol
c The experimental values ΔGexp were derived from the experimental Ki values in Ref [16] using the equation ΔG � �RT lnKi

Fig. 6 Predicted- versus experimentally determined binding free en-
ergies of the six inhibitors. The correlation constant (R2)= 0.69

Fig. 7 Decomposition of ΔGbinding on a per-residue basis for C22-κ-
receptor complexes
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vitro ADME, but low potency [16]. From Table 1, we found
that the loss in potency is caused mainly by the low ΔEvdw

and stronger polar solvation energies. This result suggests
that optimization of van der Waals interactions between
antagonists and the κ receptor may lead to potent small
molecule antagonists of the receptor.

Structure–affinity relationship

In order to better investigate the binding effect of the six
antagonists, we analysed inhibitor–residue interaction ener-
gy decomposition using the MM-GBSA decomposition
method. The antagonist–residue interaction spectrum for
compound 22 was generated from the result of the analysis
and was visualized in Fig. 7 (spectra for other systems is
given in supporting information Fig. S1). The decomposi-
tion approach is useful not only to elucidate the binding

mode at the atomic level, but also to locate residues that
contribute to the receptor–antagonist interaction. At the
same time, analysis of the structure and binding mode were
carried out. Figure 8 plots the relative geometries of the
compound 22 in the binding complex with the relevant
residues on the basis of the lowest-energy structure from
the MD trajectory. The structure shows a tight fit of the
ligand in the bottom of the binding cleft, forming ionic,
hydrogen-bond and extensive hydrophobic interactions with
the receptor.

As seen in Fig. 8a, the human κ-receptor binding pocket
is comparatively narrow and deep. It is partially capped by
the ECL2 β-hairpin. The binding antagonist reaches deep
into the pocket to form ionic interactions with the Asp138
side chain. Asp138 is conserved in all opioid receptors, and
mutagenesis studies suggest that it plays an essential role in
anchoring positively charged κ-receptor ligands [17]. At the
same time, protonated amines in the antagonist are also
essential for opioid receptor antagonist activity, which sug-
gests that the benzylic nitrogen atom should be retained in
the structure modification. The sulfonyl group of the antag-
onist forms two hydrogen-bonds with Gln115 and Tyr313
(3.13 and 3.14 Å oxygen–oxygen for Gln115 and Tyr313,
Fig. 8b). Gln115 was identified as a key residue in the
binding mode of JDTic, and Tyr313 should be important
in binding of RB-64 to the κ-receptor [1]. However, from
Fig. 6 we found that the difference between the binding
energy of these two residues is remarkable. The hydrogen-
bond energy should be low because of long bond length.
Gln115 contributes more through the hydrophobic interaction

Fig. 8 a–d Geometries of key
residues that produce favorable
interactions with the six
inhibitors are modeled in the
complexes according to the
lowest-energy structure from
the MD trajectory for 22

Table 2 RMSD values of active site residues

Residue RMSD Residue RMSD

Thr111 1.45 Trp287 2.38

Gln115 1.90 Ile290 0.56

Trp124 1.21 His291 1.12

Val134 0.51 Ile294 0.84

Leu135 2.17 Tyr312 1.20

Asp138 1.03 Tyr313 1.97

Tyr139 1.94 Ile316 0.75

Met142 1.42 Tyr320 0.92
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with the biphenyl group. The R1 group is placed in a hydro-
phobic sub-pocket formed by the side chains of Tyr139,
Met142, Trp287, Ile290, His291 and Ile316. Tyr139, His291
and Ile316 were identified as key residues in the binding of
U50488 to the κ-receptor [2]. The biphenyl group interacts
with the side chains of Leu135, Tyr312, Ile316, Tyr320
through hydrophobic interaction. Thr111, Gln115, Trp124
and Val134 form another sub-pocket, with R2 groups located
in this pocket. The other five antagonists bind to κ-receptor in
a mode similar to that of 22, and no more key residues were
identified. However, the contribution of special residues to
each complex differed depending on ligand structure.

A total of 16 key resides were identified from the energy
decomposition method . We aligned the final conformations
of these residues to the starting structure to investigate the
deviation of active site residues, which may help us predict
the binding mode of novel ligands, especially for agonists.
The RMSD values are listed in Table 2. The RMSD of
ligand counterpart was 0.56 (Fig. S2 in supporting informa-
tion). The data from Table 1 show that Gln115, Leu135,
Tyr139, Trp287 and Tyr313 deviate much more from the
reference structure. Trp287 is conserved in GPCRs, and is
thought to be a key part of the activation mechanism in
many class A GPCRs [18]. These observations are pertinent
to structure-based drug design.

Conclusions

In this work, docking, lipid bilayer simulations and calcula-
tions of binding free energies using the MM-GBSA method
were performed to study the binding of six small molecule
antagonists to the κ-receptor, and the results show that van der
Waals energies play a key role in binding. Detailed analysis
suggest that the ammonium group of the antagonist forms
ionic interactions with the Asp138 side chain, which plays
an essential role in anchoring the positively charged ligand.
The biphenyl group reaches deep into the hydrophobic pocket
and forms van derWaals interactions with Gln115, Ile316, etc.
Investigation of the deviation of the active site residues
showed that Gln115, Leu135, Tyr139, Trp287 and Tyr313
deviate greatly from the reference structure.
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